Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Sci Transl Med ; 16(741): eadg2841, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38569017

RESUMO

Troponin I (TnI) regulates thin filament activation and muscle contraction. Two isoforms, TnI-fast (TNNI2) and TnI-slow (TNNI1), are predominantly expressed in fast- and slow-twitch myofibers, respectively. TNNI2 variants are a rare cause of arthrogryposis, whereas TNNI1 variants have not been conclusively established to cause skeletal myopathy. We identified recessive loss-of-function TNNI1 variants as well as dominant gain-of-function TNNI1 variants as a cause of muscle disease, each with distinct physiological consequences and disease mechanisms. We identified three families with biallelic TNNI1 variants (F1: p.R14H/c.190-9G>A, F2 and F3: homozygous p.R14C), resulting in loss of function, manifesting with early-onset progressive muscle weakness and rod formation on histology. We also identified two families with a dominantly acting heterozygous TNNI1 variant (F4: p.R174Q and F5: p.K176del), resulting in gain of function, manifesting with muscle cramping, myalgias, and rod formation in F5. In zebrafish, TnI proteins with either of the missense variants (p.R14H; p.R174Q) incorporated into thin filaments. Molecular dynamics simulations suggested that the loss-of-function p.R14H variant decouples TnI from TnC, which was supported by functional studies showing a reduced force response of sarcomeres to submaximal [Ca2+] in patient myofibers. This contractile deficit could be reversed by a slow skeletal muscle troponin activator. In contrast, patient myofibers with the gain-of-function p.R174Q variant showed an increased force to submaximal [Ca2+], which was reversed by the small-molecule drug mavacamten. Our findings demonstrated that TNNI1 variants can cause muscle disease with variant-specific pathomechanisms, manifesting as either a hypo- or a hypercontractile phenotype, suggesting rational therapeutic strategies for each mechanism.


Assuntos
Doenças Musculares , Sarcômeros , Animais , Humanos , Cálcio/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Doenças Musculares/genética , Sarcômeros/metabolismo , Troponina I/genética , Troponina I/metabolismo , Peixe-Zebra/metabolismo
2.
medRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38585825

RESUMO

Collagen VI-related dystrophies (COL6-RDs) manifest with a spectrum of clinical phenotypes, ranging from Ullrich congenital muscular dystrophy (UCMD), presenting with prominent congenital symptoms and characterised by progressive muscle weakness, joint contractures and respiratory insufficiency, to Bethlem muscular dystrophy, with milder symptoms typically recognised later and at times resembling a limb girdle muscular dystrophy, and intermediate phenotypes falling between UCMD and Bethlem muscular dystrophy. Despite clinical and immunohistochemical features highly suggestive of COL6-RD, some patients had remained without an identified causative variant in COL6A1, COL6A2 or COL6A3. With combined muscle RNA-sequencing and whole-genome sequencing we uncovered a recurrent, de novo deep intronic variant in intron 11 of COL6A1 (c.930+189C>T) that leads to a dominantly acting in-frame pseudoexon insertion. We subsequently identified and have characterised an international cohort of forty-four patients with this COL6A1 intron 11 causative variant, one of the most common recurrent causative variants in the collagen VI genes. Patients manifest a consistently severe phenotype characterised by a paucity of early symptoms followed by an accelerated progression to a severe form of UCMD, except for one patient with somatic mosaicism for this COL6A1 intron 11 variant who manifests a milder phenotype consistent with Bethlem muscular dystrophy. Characterisation of this individual provides a robust validation for the development of our pseudoexon skipping therapy. We have previously shown that splice-modulating antisense oligomers applied in vitro effectively decreased the abundance of the mutant pseudoexon-containing COL6A1 transcripts to levels comparable to the in vivo scenario of the somatic mosaicism shown here, indicating that this therapeutic approach carries significant translational promise for ameliorating the severe form of UCMD caused by this common recurrent COL6A1 causative variant to a Bethlem muscular dystrophy phenotype.

3.
HGG Adv ; 5(2): 100274, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38358893

RESUMO

Pathogenic variants in the DES gene clinically manifest as progressive skeletal muscle weakness, cardiomyopathy with associated severe arrhythmias, and respiratory insufficiency, and are collectively known as desminopathies. While most DES pathogenic variants act via a dominant mechanism, recessively acting variants have also been reported. Currently, there are no effective therapeutic interventions for desminopathies of any type. Here, we report an affected individual with rapidly progressive dilated cardiomyopathy, requiring heart transplantation at age 13 years, in the setting of childhood-onset skeletal muscle weakness. We identified biallelic DES variants (c.640-13 T>A and c.1288+1 G>A) and show aberrant DES gene splicing in the affected individual's muscle. Through the generation of an inducible lentiviral system, we transdifferentiated fibroblast cultures derived from the affected individual into myoblasts and validated this system using RNA sequencing. We tested rationally designed, custom antisense oligonucleotides to screen for splice correction in these transdifferentiated cells and a functional minigene splicing assay. However, rather than correctly redirecting splicing, we found them to induce undesired exon skipping. Our results indicate that, while an individual precision-based molecular therapeutic approach to splice-altering pathogenic variants is promising, careful preclinical testing is imperative for each novel variant to test the feasibility of this type of approach for translation.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Adolescente , Humanos , Cardiomiopatias/genética , Cardiomiopatia Dilatada/genética , Mutação , Splicing de RNA/genética
4.
Nat Med ; 30(1): 199-206, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177855

RESUMO

Limb-girdle muscular dystrophy 2E/R4 is caused by mutations in the ß-sarcoglycan (SGCB) gene, leading to SGCB deficiency and consequent muscle loss. We developed a gene therapy approach based on functional replacement of the deficient SCB protein. Here we report interim results from a first-in-human, open-label, nonrandomized, phase 1/2 trial evaluating the safety and efficacy of bidridistrogene xeboparvovec, an adeno-associated virus-based gene therapy containing a codon-optimized, full-length human SGCB transgene. Patients aged 4-15 years with confirmed SGCB mutations at both alleles received one intravenous infusion of either 1.85 × 1013 vector genome copies kg-1 (Cohort 1, n = 3) or 7.41 × 1013 vector gene copies kg-1 (Cohort 2, n = 3). Primary endpoint was safety, and secondary endpoint was change in SGCB expression in skeletal muscle from baseline to Day 60. We report interim Year 2 results (trial ongoing). The most frequent treatment-related adverse events were vomiting (four of six patients) and gamma-glutamyl transferase increase (three of six patients). Serious adverse events resolved with standard therapies. Robust SGCB expression was observed: Day 60 mean (s.d.) percentage of normal expression 36.2% (2.7%) in Cohort 1 and 62.1% (8.7%) in Cohort 2. Post hoc exploratory analysis showed preliminary motor improvements using the North Star Assessment for Limb-girdle Type Muscular Dystrophies maintained through Year 2. The 2-year safety and efficacy of bidridistrogene xeboparvovec support clinical development advancement. Further studies are necessary to confirm the long-term safety and efficacy of this gene therapy. ClinicalTrials.gov registration: NCT03652259 .


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Sarcoglicanopatias , Humanos , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/metabolismo , Distrofia Muscular do Cíngulo dos Membros/terapia , Sarcoglicanopatias/genética , Sarcoglicanopatias/metabolismo , Sarcoglicanopatias/terapia , Músculo Esquelético/metabolismo , Terapia Genética/efeitos adversos , Terapia Genética/métodos
5.
EBioMedicine ; 99: 104894, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086156

RESUMO

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a rare, life-threatening congenital muscle disease caused by mutations in the MTM1 gene that result in profound muscle weakness, significant respiratory insufficiency, and high infant mortality. There is no approved disease-modifying therapy for XLMTM. Resamirigene bilparvovec (AT132; rAAV8-Des-hMTM1) is an investigational adeno-associated virus (AAV8)-mediated gene replacement therapy designed to deliver MTM1 to skeletal muscle cells and achieve long-term correction of XLMTM-related muscle pathology. The clinical trial ASPIRO (NCT03199469) investigating resamirigene bilparvovec in XLMTM is currently paused while the risk:benefit balance associated with this gene therapy is further investigated. METHODS: Muscle biopsies were taken before treatment and 24 and 48 weeks after treatment from ten boys with XLMTM in a clinical trial of resamirigene bilparvovec (ASPIRO; NCT03199469). Comprehensive histopathological analysis was performed. FINDINGS: Baseline biopsies uniformly showed findings characteristic of XLMTM, including small myofibres, increased internal or central nucleation, and central aggregates of organelles. Biopsies taken at 24 weeks post-treatment showed marked improvement of organelle localisation, without apparent increases in myofibre size in most participants. Biopsies taken at 48 weeks, however, did show statistically significant increases in myofibre size in all nine biopsies evaluated at this timepoint. Histopathological endpoints that did not demonstrate statistically significant changes with treatment included the degree of internal/central nucleation, numbers of triad structures, fibre type distributions, and numbers of satellite cells. Limited (predominantly mild) treatment-associated inflammatory changes were seen in biopsy specimens from five participants. INTERPRETATION: Muscle biopsies from individuals with XLMTM treated with resamirigene bilparvovec display statistically significant improvement in organelle localisation and myofibre size during a period of substantial improvements in muscle strength and respiratory function. This study identifies valuable histological endpoints for tracking treatment-related gains with resamirigene bilparvovec, as well as endpoints that did not show strong correlation with clinical improvement in this human study. FUNDING: Astellas Gene Therapies (formerly Audentes Therapeutics, Inc.).


Assuntos
Músculo Esquelético , Miopatias Congênitas Estruturais , Masculino , Lactente , Humanos , Músculo Esquelético/patologia , Terapia Genética/efeitos adversos , Terapia Genética/métodos , Debilidade Muscular , Força Muscular , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Miopatias Congênitas Estruturais/patologia
6.
Lancet Neurol ; 22(12): 1125-1139, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977713

RESUMO

BACKGROUND: X-linked myotubular myopathy is a rare, life-threatening, congenital muscle disease observed mostly in males, which is caused by mutations in MTM1. No therapies are approved for this disease. We aimed to assess the safety and efficacy of resamirigene bilparvovec, which is an adeno-associated viral vector serotype 8 delivering human MTM1. METHODS: ASPIRO is an open-label, dose-escalation trial at seven academic medical centres in Canada, France, Germany, and the USA. We included boys younger than 5 years with X-linked myotubular myopathy who required mechanical ventilator support. The trial was initially in two parts. Part 1 was planned as a safety and dose-escalation phase in which participants were randomly allocated (2:1) to either the first dose level (1·3 × 1014 vector genomes [vg]/kg bodyweight) of resamirigene bilparvovec or delayed treatment, then, for later participants, to either a higher dose (3·5 × 1014 vg/kg bodyweight) of resamirigene bilparvovec or delayed treatment. Part 2 was intended to confirm the dose selected in part 1. Resamirigene bilparvovec was administered as a single intravenous infusion. An untreated control group comprised boys who participated in a run-in study (INCEPTUS; NCT02704273) or those in the delayed treatment cohort who did not receive any dose. The primary efficacy outcome was the change from baseline to week 24 in hours of daily ventilator support. After three unexpected deaths, dosing at the higher dose was stopped and the two-part feature of the study design was eliminated. Because of changes to the study design during its implementation, analyses were done on an as-treated basis and are deemed exploratory. All treated and control participants were included in the safety analysis. The trial is registered with ClinicalTrials.gov, NCT03199469. Outcomes are reported as of Feb 28, 2022. ASPIRO is currently paused while deaths in dosed participants are investigated. FINDINGS: Between Aug 3, 2017 and June 1, 2021, 30 participants were screened for eligibility, of whom 26 were enrolled; six were allocated to the lower dose, 13 to the higher dose, and seven to delayed treatment. Of the seven children whose treatment was delayed, four later received the higher dose (n=17 total in the higher dose cohort), one received the lower dose (n=7 total in the lower dose cohort), and two received no dose and joined the control group (n=14 total, including 12 children from INCEPTUS). Median age at dosing or enrolment was 12·1 months (IQR 10·0-30·9; range 9·5-49·7) in the lower dose cohort, 31·1 months (16·0-64·7; 6·8-72·7) in the higher dose cohort, and 18·7 months (10·1-31·5; 5·9-39·3) in the control cohort. Median follow-up was 46·1 months (IQR 41·0-49·5; range 2·1-54·7) for lower dose participants, 27·6 months (24·6-29·1; 3·4-41·0) for higher dose participants, and 28·3 months (9·7-46·9; 5·7-32·7) for control participants. At week 24, lower dose participants had an estimated 77·7 percentage point (95% CI 40·22 to 115·24) greater reduction in least squares mean hours per day of ventilator support from baseline versus controls (p=0·0002), and higher dose participants had a 22·8 percentage point (6·15 to 39·37) greater reduction from baseline versus controls (p=0·0077). One participant in the lower dose cohort and three in the higher dose cohort died; at the time of death, all children had cholestatic liver failure following gene therapy (immediate causes of death were sepsis; hepatopathy, severe immune dysfunction, and pseudomonal sepsis; gastrointestinal haemorrhage; and septic shock). Three individuals in the control group died (haemorrhage presumed related to hepatic peliosis; aspiration pneumonia; and cardiopulmonary failure). INTERPRETATION: Most children with X-linked myotubular myopathy who received MTM1 gene replacement therapy had important improvements in ventilator dependence and motor function, with more than half of dosed participants achieving ventilator independence and some attaining the ability to walk independently. Investigations into the risk for underlying hepatobiliary disease in X-linked myotubular myopathy, and the need for monitoring of liver function before gene replacement therapy, are ongoing. FUNDING: Astellas Gene Therapies.


Assuntos
Miopatias Congênitas Estruturais , Sepse , Masculino , Criança , Humanos , Lactente , Pré-Escolar , França , Terapia Genética/efeitos adversos , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Alemanha , Resultado do Tratamento
7.
Mov Disord Clin Pract ; 10(4): 646-651, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37070061

RESUMO

Background: The concept of a myopathy with associated tremor ("myogenic tremor") in humans has been previously described for specific MYBPC1 (Myosin-Binding Protein C) variants. Here we report for the first time an individual with tremor who was found to have a de-novo likely pathogenic variant in Myosin Heavy Chain 7 (MYH7).We provide a detailed electrophysiological characterization of the tremor syndrome in a human individual with a myopathy and this pathogenic MYH7 variant to provide further insight in the phenotypic spectrum and pathomechanism of myogenic tremors in skeletal sarcomeric myopathies. Methods: Electromyographic recordings were obtained from facial muscles, as well as bilateral upper and lower extremities. Results: 10 to 11 Hz activity was observed in the face and extremities during recordings with muscle activation. There were intermittent episodes of significant left-right coherence that would modulate across muscle groups throughout the recording, but no coherence between muscles at different levels of the neuraxis. Conclusions: A possible explanation for this phenomenon is that the tremor originates at the sarcomere level within muscles, which is then picked up by muscle spindles and leads to activating input to the neuraxis segment. At the same time, the stability of the tremor frequency does suggest the presence of central oscillators at the segmental level. Thus, further studies will be needed to determine the origin of myogenic tremor and to better understand the pathomechanism.

8.
Nat Commun ; 14(1): 937, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36806650

RESUMO

Lipidomics encompassing automated lipid extraction, a four-dimensional (4D) feature selection strategy for confident lipid annotation as well as reproducible and cross-validated quantification can expedite clinical profiling. Here, we determine 4D descriptors (mass to charge, retention time, collision cross section, and fragmentation spectra) of 200 lipid standards and 493 lipids from reference plasma via trapped ion mobility mass spectrometry to enable the implementation of stringent criteria for lipid annotation. We use 4D lipidomics to confidently annotate 370 lipids in reference plasma samples and 364 lipids in serum samples, and reproducibly quantify 359 lipids using level-3 internal standards. We show the utility of our 4D lipidomics workflow for high-throughput applications by reliable profiling of intra-individual lipidome phenotypes in plasma, serum, whole blood, venous and finger-prick dried blood spots.


Assuntos
Lipidômica , Lipídeos , Humanos , Lipídeos/química , Lipidômica/métodos , Espectrometria de Mobilidade Iônica , Fluxo de Trabalho
9.
J Neuromuscul Dis ; 9(4): 503-516, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35694931

RESUMO

BACKGROUND: X-linked myotubular myopathy (XLMTM) is a life-threatening congenital myopathy that, in most cases, is characterized by profound muscle weakness, respiratory failure, need for mechanical ventilation and gastrostomy feeding, and early death. OBJECTIVE: We aimed to characterize the neuromuscular, respiratory, and extramuscular burden of XLMTM in a prospective, longitudinal study. METHODS: Thirty-four participants < 4 years old with XLMTM and receiving ventilator support enrolled in INCEPTUS, a prospective, multicenter, non-interventional study. Disease-related adverse events, respiratory and motor function, feeding, secretions, and quality of life were assessed. RESULTS: During median (range) follow-up of 13.0 (0.5, 32.9) months, there were 3 deaths (aspiration pneumonia; cardiopulmonary failure; hepatic hemorrhage with peliosis) and 61 serious disease-related events in 20 (59%) participants, mostly respiratory (52 events, 18 participants). Most participants (80%) required permanent invasive ventilation (>16 hours/day); 20% required non-invasive support (6-16 hours/day). Median age at tracheostomy was 3.5 months (95% CI: 2.5, 9.0). Thirty-three participants (97%) required gastrostomy. Thirty-one (91%) participants had histories of hepatic disease and/or prospectively experienced related adverse events or laboratory or imaging abnormalities. CHOP INTEND scores ranged from 19-52 (mean: 35.1). Seven participants (21%) could sit unsupported for≥30 seconds (one later lost this ability); none could pull to stand or walk with or without support. These parameters remained static over time across the INCEPTUS cohort. CONCLUSIONS: INCEPTUS confirmed high medical impact, static respiratory, motor and feeding difficulties, and early death in boys with XLMTM. Hepatobiliary disease was identified as an under-recognized comorbidity. There are currently no approved disease-modifying treatments.


Assuntos
Miopatias Congênitas Estruturais , Qualidade de Vida , Pré-Escolar , Terapia Genética , Humanos , Estudos Longitudinais , Masculino , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/terapia , Estudos Prospectivos
10.
Neuropediatrics ; 53(5): 309-320, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35605965

RESUMO

INTRODUCTION: Arthrogryposis is characterized by the presence of multiple contractures at birth and can be caused by pathogenic variants in TTN (Titin). Exons and variants that are not expressed in one of the three major isoforms of titin are referred to as "metatranscript-only" and have been considered to be only expressed during fetal development. Recently, the metatranscript-only variant (c.39974-11T > G) in TTN with a second truncating TTN variant has been linked to arthrogryposis multiplex congenita and myopathy. METHODS: Via exome sequencing we identified the TTN c.39974-11T > G splice variant in trans with one of three truncating variants (p.Arg8922*, p.Lys32998Asnfs*63, p.Tyr10345*) in five individuals from three families. Clinical presentation and muscle ultrasound as well as MRI images were analyzed. RESULTS: All five patients presented with generalized muscular hypotonia, reduced muscle bulk, and congenital contractures most prominently affecting the upper limbs and distal joints. Muscular hypotonia persisted and contractures improved over time. One individual, the recipient twin in the setting of twin-to-twin transfusion syndrome, died from severe cardiac hypertrophy 1 day after birth. Ultrasound and MRI imaging studies revealed a recognizable pattern of muscle involvement with striking fibrofatty involvement of the hamstrings and calves, and relative sparing of the femoral adductors and anterior segment of the thighs. CONCLUSION: The recurrent TTN c.39974-11T > G variant consistently causes congenital arthrogryposis and persisting myopathy providing evidence that the metatranscript-only 213 to 217 exons impact muscle elasticity during early development and beyond. There is a recognizable pattern of muscle involvement, which is distinct from other myopathies and provides valuable clues for diagnostic work-up.


Assuntos
Artrogripose , Contratura , Doenças Musculares , Artrogripose/diagnóstico por imagem , Artrogripose/genética , Conectina/genética , Contratura/diagnóstico por imagem , Contratura/genética , Humanos , Recém-Nascido , Hipotonia Muscular , Mutação , Isoformas de Proteínas
11.
Nat Med ; 27(7): 1197-1204, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34059824

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive, neurodegenerative disease of the lower and upper motor neurons with sporadic or hereditary occurrence. Age of onset, pattern of motor neuron degeneration and disease progression vary widely among individuals with ALS. Various cellular processes may drive ALS pathomechanisms, but a monogenic direct metabolic disturbance has not been causally linked to ALS. Here we show SPTLC1 variants that result in unrestrained sphingoid base synthesis cause a monogenic form of ALS. We identified four specific, dominantly acting SPTLC1 variants in seven families manifesting as childhood-onset ALS. These variants disrupt the normal homeostatic regulation of serine palmitoyltransferase (SPT) by ORMDL proteins, resulting in unregulated SPT activity and elevated levels of canonical SPT products. Notably, this is in contrast with SPTLC1 variants that shift SPT amino acid usage from serine to alanine, result in elevated levels of deoxysphingolipids and manifest with the alternate phenotype of hereditary sensory and autonomic neuropathy. We custom designed small interfering RNAs that selectively target the SPTLC1 ALS allele for degradation, leave the normal allele intact and normalize sphingolipid levels in vitro. The role of primary metabolic disturbances in ALS has been elusive; this study defines excess sphingolipid biosynthesis as a fundamental metabolic mechanism for motor neuron disease.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Esfingolipídeos/biossíntese , Adolescente , Adulto , Alelos , Sequência de Aminoácidos , Esclerose Amiotrófica Lateral/enzimologia , Esclerose Amiotrófica Lateral/genética , Sistemas CRISPR-Cas , Criança , Feminino , Genes Dominantes , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Serina C-Palmitoiltransferase/genética , Serina C-Palmitoiltransferase/metabolismo , Adulto Jovem
12.
Brain ; 144(2): 584-600, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33559681

RESUMO

The extracellular matrix comprises a network of macromolecules such as collagens, proteoglycans and glycoproteins. VWA1 (von Willebrand factor A domain containing 1) encodes a component of the extracellular matrix that interacts with perlecan/collagen VI, appears to be involved in stabilizing extracellular matrix structures, and demonstrates high expression levels in tibial nerve. Vwa1-deficient mice manifest with abnormal peripheral nerve structure/function; however, VWA1 variants have not previously been associated with human disease. By interrogating the genome sequences of 74 180 individuals from the 100K Genomes Project in combination with international gene-matching efforts and targeted sequencing, we identified 17 individuals from 15 families with an autosomal-recessive, non-length dependent, hereditary motor neuropathy and rare biallelic variants in VWA1. A single disease-associated allele p.(G25Rfs*74), a 10-bp repeat expansion, was observed in 14/15 families and was homozygous in 10/15. Given an allele frequency in European populations approaching 1/1000, the seven unrelated homozygote individuals ascertained from the 100K Genomes Project represents a substantial enrichment above expected. Haplotype analysis identified a shared 220 kb region suggesting that this founder mutation arose >7000 years ago. A wide age-range of patients (6-83 years) helped delineate the clinical phenotype over time. The commonest disease presentation in the cohort was an early-onset (mean 2.0 ± 1.4 years) non-length-dependent axonal hereditary motor neuropathy, confirmed on electrophysiology, which will have to be differentiated from other predominantly or pure motor neuropathies and neuronopathies. Because of slow disease progression, ambulation was largely preserved. Neurophysiology, muscle histopathology, and muscle MRI findings typically revealed clear neurogenic changes with single isolated cases displaying additional myopathic process. We speculate that a few findings of myopathic changes might be secondary to chronic denervation rather than indicating an additional myopathic disease process. Duplex reverse transcription polymerase chain reaction and immunoblotting using patient fibroblasts revealed that the founder allele results in partial nonsense mediated decay and an absence of detectable protein. CRISPR and morpholino vwa1 modelling in zebrafish demonstrated reductions in motor neuron axonal growth, synaptic formation in the skeletal muscles and locomotive behaviour. In summary, we estimate that biallelic variants in VWA1 may be responsible for up to 1% of unexplained hereditary motor neuropathy cases in Europeans. The detailed clinical characterization provided here will facilitate targeted testing on suitable patient cohorts. This novel disease gene may have previously evaded detection because of high GC content, consequential low coverage and computational difficulties associated with robustly detecting repeat-expansions. Reviewing previously unsolved exomes using lower QC filters may generate further diagnoses.


Assuntos
Proteínas da Matriz Extracelular/genética , Neuropatia Hereditária Motora e Sensorial/genética , Adulto , Idoso , Animais , Comportamento Animal/fisiologia , Criança , Feminino , Neuropatia Hereditária Motora e Sensorial/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra
13.
Am J Hum Genet ; 107(6): 1078-1095, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33217308

RESUMO

The myosin-directed chaperone UNC-45B is essential for sarcomeric organization and muscle function from Caenorhabditis elegans to humans. The pathological impact of UNC-45B in muscle disease remained elusive. We report ten individuals with bi-allelic variants in UNC45B who exhibit childhood-onset progressive muscle weakness. We identified a common UNC45B variant that acts as a complex hypomorph splice variant. Purified UNC-45B mutants showed changes in folding and solubility. In situ localization studies further demonstrated reduced expression of mutant UNC-45B in muscle combined with abnormal localization away from the A-band towards the Z-disk of the sarcomere. The physiological relevance of these observations was investigated in C. elegans by transgenic expression of conserved UNC-45 missense variants, which showed impaired myosin binding for one and defective muscle function for three. Together, our results demonstrate that UNC-45B impairment manifests as a chaperonopathy with progressive muscle pathology, which discovers the previously unknown conserved role of UNC-45B in myofibrillar organization.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Chaperonas Moleculares/genética , Chaperonas Moleculares/fisiologia , Doenças Musculares/genética , Mutação de Sentido Incorreto , Adolescente , Adulto , Alelos , Animais , Caenorhabditis elegans , Feminino , Variação Genética , Humanos , Mutação com Perda de Função , Masculino , Músculo Esquelético/patologia , Miofibrilas , Miosinas , Sarcômeros/metabolismo , Análise de Sequência de RNA , Transgenes , Sequenciamento do Exoma , Adulto Jovem
15.
Neuromuscul Disord ; 30(9): 742-749, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32819793

RESUMO

Patients with bi-allelic loss-of-function mutations in the gene ANO5 most commonly present with muscular dystrophy. In some studies, patients with ANO5-related dystrophy (ANO5-RD) had evidence of mild cardiac abnormalities; however, cardiac magnetic resonance imaging (MRI) has not been used for myocardial characterization. Ten patients with genetically confirmed ANO5-RD were enrolled in a phenotyping study to better characterize cardiac involvement. Evaluations included medical history, neurological examination and cardiac evaluations (electrocardiogram, echocardiogram and cardiac MRI). All patients were clinically asymptomatic from a cardiac perspective. Muscle MRI was consistent with previous studies of ANO5-RD with increased T1 signal in the posterior and medial compartments of the upper leg and the posterior compartment of the lower leg. Cardiac studies using echocardiography and cardiac MRI revealed dilation of the aortic root and thickening of the aortic valve without significant stenosis in 3/10 patients. There was evidence of abnormal late gadolinium enhancement (LGE) on cardiac MRI in 2/10 patients. In ANO5-RD, the development of cardiac fibrosis, edema or inflammation as demonstrated by LGE has not yet been reported. Cardiac MRI can characterize cardiac tissue and may detect subtle changes before they appear on echocardiography, with potential prognostic implications.


Assuntos
Meios de Contraste/farmacologia , Gadolínio/metabolismo , Imagem Cinética por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Anoctaminas/genética , Cardiomiopatias/classificação , Cardiomiopatias/patologia , Eletrocardiografia , Feminino , Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Miocárdio/patologia
16.
J Clin Med ; 8(10)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557872

RESUMO

PURPOSE: The aim of this study was to evaluate the accuracy of high-frequency ultrasound (HFUS) for measurement of bone thickness surrounding dental implants. METHODS: Eight porcine bone samples containing dental implants were scanned by a HFUS scanner and compared using cone-beam computed tomography (CBCT) and an optical scanner. Bone thickness was measured in the buccolingual region of dental implants in 10 points distributed between the platform and apical portion of the implant. RESULTS: The mean measurement error for the ultrasound method was 0.11 mm, whereas CBCT showed a measurement error of 0.20 mm. For both devices, the maximal measurement error was 0.28 mm. CONCLUSION: Within the simulated limited conditions of this study, high-frequency ultrasound, with optical scanning used as a reference, presented higher accuracy in comparison to CBCT, and seems to be a promising tool for measuring peri-implant bone.

17.
Ann Clin Transl Neurol ; 6(10): 1980-1988, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509352

RESUMO

OBJECTIVE: To characterize the natural history and clinical features of myopathies caused by mono-allelic, dominantly acting pathogenic variants in COL12A1. METHODS: Patients with dominant COL12A1-related myopathies were characterized by history and clinical examination, muscle imaging, and genetic analysis. Pathogenicity of the variants was assessed by immunostaining patient-derived dermal fibroblast cultures for collagen XII. RESULTS: Four independent families with childhood-onset weakness due to novel, dominantly acting pathogenic variants in COL12A1 were identified. Adult patients exhibited distal-predominant weakness. Three families carried dominantly acting glycine missense variants, and one family had a heterozygous, intragenic, in-frame deletion of exon 52 of COL12A1. All pathogenic variants resulted in increased intracellular retention of collagen XII in patient-derived fibroblasts as well as loss of extracellular, fibrillar collagen XII deposition. Since haploinsufficiency for COL12A1 is largely clinically asymptomatic, we designed and evaluated small interfering RNAs (siRNAs) that specifically target the mutant allele containing the exon 52 deletion. Immunostaining of the patient fibroblasts treated with the siRNA showed a near complete correction of collagen XII staining patterns. INTERPRETATION: This study characterizes a distal myopathy phenotype in adults with dominant COL12A1 pathogenic variants, further defining the phenotypic spectrum and natural history of COL12A1-related myopathies. This work also provides proof of concept of a precision medicine treatment approach by proposing and validating allele-specific knockdown using siRNAs specifically designed to target a patient's dominant COL12A1 disease allele.


Assuntos
Colágeno Tipo XII/genética , Miopatias Distais/genética , Genes Dominantes/genética , RNA Interferente Pequeno/uso terapêutico , Adulto , Idade de Início , Técnicas de Cultura de Células , Pré-Escolar , Feminino , Fibroblastos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Medicina de Precisão , Estudo de Prova de Conceito , Sequenciamento do Exoma
18.
Semin Pediatr Neurol ; 29: 44-54, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31060725

RESUMO

Congenital disorders of muscle most importantly encompass the congenital muscular dystrophies as well as the congenital myopathies. With the broader availability of next generation genetic testing there has been an expansion of phenotypes and genotypes, while the very large genes such as titin, nebulin, and RYR1 have also become accessible to complete sequencing. This development has had considerable diagnostic power while at the same time also creating challenges in the interpretation of the many variants of uncertain significance that will need a solid clinical plausibility test, based on "deep" phenotyping, taking into account clinical, extended clinical, histological, and physiological data. One tool in this context is imaging of skeletal muscle, including by ultrasound. Muscle ultrasound is a useful, noninvasive, child-friendly technique for visualizing normal and pathological skeletal muscle. By virtue of its different mode of image acquisition compared to muscle MRI, it allows for the assessment of different and often earlier changes, also circumventing the need for sedation. Herein we highlight the important role of muscle ultrasound as a diagnostic tool and an extension of the physical exam in the work-up of congenital onset muscle disease, presenting various relevant clinical scenarios. We show how muscle ultrasound can confirm or refute skeletal muscle involvement and yield information about the nature of the involvement (myopathic vs neurogenic). Muscle ultrasound can also guide the appropriate next diagnostic steps and recognize diagnostically important qualitative patterns to help confirm or refute genetic considerations raised by next generation sequencing. We illustrate specific muscle ultrasound involvement patterns, which constitute accessible diagnostic hints and show that muscle ultrasound, in conjunction with the clinical phenotype, the histological appearance of the muscle biopsy (when available), and the ascertained genotype, can be a very powerful tool in integrating all available information into a final accurate and precise diagnosis in the age of next generation sequencing.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Mutação , Miopatias Congênitas Estruturais/diagnóstico , Ultrassonografia , Análise Mutacional de DNA , Diagnóstico Diferencial , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Miopatias Congênitas Estruturais/diagnóstico por imagem , Miopatias Congênitas Estruturais/genética
19.
Acta Neuropathol ; 137(3): 501-519, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30701273

RESUMO

The identification of genes implicated in myopathies is essential for diagnosis and for revealing novel therapeutic targets. Here we characterize a novel subclass of congenital myopathy at the morphological, molecular, and functional level. Through exome sequencing, we identified de novo ACTN2 mutations, a missense and a deletion, in two unrelated patients presenting with progressive early-onset muscle weakness and respiratory involvement. Morphological and ultrastructural analyses of muscle biopsies revealed a distinctive pattern with the presence of muscle fibers containing small structured cores and jagged Z-lines. Deeper analysis of the missense mutation revealed mutant alpha-actinin-2 properly localized to the Z-line in differentiating myotubes and its level was not altered in muscle biopsy. Modelling of the disease in zebrafish and mice by exogenous expression of mutated alpha-actinin-2 recapitulated the abnormal muscle function and structure seen in the patients. Motor deficits were noted in zebrafish, and muscle force was impaired in isolated muscles from AAV-transduced mice. In both models, sarcomeric disorganization was evident, while expression of wild-type alpha-actinin-2 did not result in muscle anomalies. The murine muscles injected with mutant ACTN2 displayed cores and Z-line defects. Dominant ACTN2 mutations were previously associated with cardiomyopathies, and our data demonstrate that specific mutations in the well-known Z-line regulator alpha-actinin-2 can cause a skeletal muscle disorder.


Assuntos
Actinina/genética , Músculo Esquelético/patologia , Miotonia Congênita/genética , Miotonia Congênita/patologia , Animais , Feminino , Humanos , Masculino , Camundongos , Mutação , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...